At a hydroelectric power plant operated by the energy company Energiedienst in Grenzach-Wylen, the production of green hydrogen has been running successfully for four months. The project produces 500 kilograms of hydrogen per day.
Hydrogen from hydropower: successful start for one of the largest power-to-gas plants in Germany to date. This is reported by the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW). The megawatt plant has been in operation for four months in April 2020 and is functioning reliably. A research electrolyser connected to it is also running successfully. The ZSW is coordinating the project. The operator of the commercial plant is the energy supplier Energiedienst AG.
The power-to-gas plant with an electrical connected load of one megawatt produces renewable hydrogen using electricity from the Rhine hydroelectric power plant in Wyhlen. Since it is not necessary to use the public electricity grid, grid fees and the EEG surcharge do not apply. In addition, high full load hours can be achieved because the hydropower is available practically around the clock. This further improves the economic efficiency and enables extensive operating experience to be gained quickly.
He said the plant has been running regularly since early December 2019 and has had 1,850 hours of operation since then. Previously, it was in trial operation. The monitoring system set up by the ZSW, which measures all essential components and subsystems, functions perfectly. The plant operates fully automatically in 24-hour operation both at full load and in various partial load conditions.
Efficiency of 66 percent
The ZSW monitors operation with the help of remote data transmission to Stuttgart and automated data evaluation. The overall efficiency of electricity to high-purity hydrogen compressed to 300 bar is currently up to 66 percent in relation to the calorific value of the gas. In addition, the researchers are investigating ageing effects and deriving potential improvements from the data.
So far, the plant has filled 62 trailers with hydrogen suitable for fuel cells. Each of these transportable containers holds around 300 kilograms. The plant can produce up to 500 kilograms of hydrogen per day. This is enough for an average daily mileage of more than 1,000 fuel cell cars.
Improved electrolysis
The research project docked to the commercial plant is also progressing positively. In a research plant, the scientists are testing improved electrolysis blocks with a maximum output of 300 kilowatts in parallel operation with the commercial plant. They should further reduce the price of hydrogen. But companies could also test and optimize components there.
Last year, the ZSW and its research partners already achieved an initial success during the test operation of the plant: with new electrode coatings, the researchers achieved 20 percent more power density compared to the electrolysis blocks of the industrial plant section. This means that less volume and material are required for the same output.
Goal: Halve hydrogen price
Since the investment costs are also based on the construction volume and the electrolysis units account for the largest share of costs in the conversion of renewable electricity at around 40 percent, progress in this area is automatically reflected in the price of hydrogen. For manufacturers of electrolysis plants, development is therefore an important factor for further cost reduction. The long-term goal of the ZSW researchers and Energiedienst engineers is to roughly halve the current production costs of electricity-based hydrogen.
The state of Baden-Württemberg supports the Lighthouse project with a total of 4.5 million euros. In 2019, a project based on this was selected by the Federal Ministry of Economics and Technology as one of the winners of the first round of the "Reallabore der Energiewende" ideas competition. A total of twelve partners are on board for this major project.
14.4.2020 | Source: ZSW
See also:
http://sdg21.eu/blog/gruener-wasserstoff-aus-wyhlen-behoerden-geben-gruenes-licht
Keywords: Energy storage, Research, News Blog Baden-Württemberg, Power-to-Gas, Hydrogen